

Welcome to SWAN!

Contents:

	Screening Workflows And Nanomaterials
	🛠 Installation

	Tutorial to Generate Statistical Models
	Simulation input

	Training a model

	Predicting new data

	Available models
	Fully Connected Neural Network

	Message Passing Neural Network

	Training and validation

	API Data Representation
	Data Base Class

	Graph Data Base Class

	Fingerprints Data

	Torch Geometric Data

	DGL Data

	API Statistical Models
	Deep Feedforward Network

	Message Passing Graph Neural Network

	Equivariant Neural Networks

Indices and tables

	Index

	Module Index

	Search Page

 [image: _images/badge.svg]
 [https://github.com/nlesc-nano/swan/actions][image: _images/badge1.svg]
 [https://codecov.io/gh/nlesc-nano/swan][image: _images/191957101.svg]
 [https://zenodo.org/badge/latestdoi/191957101][image: _images/da1fb11f31c1564724b8233055ee2341c4ed974d.svg]
 [https://swan.readthedocs.io/en/latest/?badge=latest]
Screening Workflows And Nanomaterials

🦢 Swan is a Python pacakge to create statistical models using machine learning to predict molecular properties. See Documentation [https://swan.readthedocs.io/en/latest/].

🛠 Installation

	Download miniconda for python3: miniconda [https://docs.conda.io/en/latest/miniconda.html] (also you can install the complete anaconda [https://www.anaconda.com/distribution/#download-section] version).

	Install according to: installConda [https://conda.io/projects/conda/en/latest/user-guide/install/index.html].

	Create a new virtual environment using the following commands:

	conda create -n swan

	Activate the new virtual environment

	conda activate swan

To exit the virtual environment type conda deactivate.

Dependencies installation

	Type in your terminal:

conda activate swan

Using the conda environment the following packages should be installed:

	install RDKit [https://www.rdkit.org] and H5PY [https://www.h5py.org/]:

	conda install -y -q -c conda-forge h5py rdkit

	install Pytorch [https://pytorch.org] according to this [https://pytorch.org/get-started/locally/] recipe

	install Pytorch_Geometric dependencies [https://github.com/rusty1s/pytorch_geometric#installation].

	install DGL using conda [https://www.dgl.ai/pages/start.html]

Package installation

Finally install the package:

	Install swan using pip:
- pip install git+https://github.com/nlesc-nano/swan.git

Now you are ready to use swan.

Notes:

	Once the libraries and the virtual environment are installed, you only need to type
conda activate swan each time that you want to use the software.

Tutorial to Generate Statistical Models

In this tutorial we explore how to create and train statistical models to predict
molecular properties using the Pytorch [https://pytorch.org] library. We will use smiles [https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system] to represent the molecules
and use the csv [https://en.wikipedia.org/wiki/Comma-separated_values] file format to manipulate the molecules and their properties.

As an example, we will predict the activity coefficient_ for a subset of carboxylic acids taken
from the GDB-13 database_. Firstly, We randomly takes a 1000 smiles [https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system] from the database and
compute the activity coefficient_ using the COSMO approach_. We store the values in the thousand.csv_
file.

A peek into the file will show you something like:

smiles,E_solv,gammas
OC(=O)C1OC(C#C)C2NC1C=C2,-11.05439751550119,8.816417146193844
OC(=O)C1C2NC3C(=O)C2CC13O,-8.98188869016993,52.806217658944995
OC(=O)C=C(C#C)C1NC1C1CN1,-11.386853547889574,6.413128231164093
OC(=O)C1=CCCCC2CC2C#C1,-10.578966144649726,1.426566948888662

Where the first column contains the index of the row, the second the solvation energy and finally the
activity coefficients_ denoted as gammas. Once we have the data we can start exploring different statistical methods.

swan offers a thin interface to Pytorch [https://pytorch.org]. It takes yaml [https://yaml.org] file as input and either train an statistical model or
generates a prediction using a previously trained model. Let’s briefly explore the swan input.

Simulation input

A typical swan input file looks like:

dataset_file:
 tests/test_files/thousand.csv
properties:
 - gammas

use_cuda: True

featurizer:
 fingerprint: atompair

model:
 name: FingerprintFullyConnected
 parameters:
 input_features: 2048 # Fingerprint size
 hidden_cells: 200
 output_features: 1 # We are predicting a single property

torch_config:
 epochs: 100
 batch_size: 100
 optimizer:
 name: sgd
 lr: 0.002

dataset_file: A csv [https://en.wikipedia.org/wiki/Comma-separated_values] file with the smiles [https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system] and other molecular properties.

properties: the columns names of hte csv [https://en.wikipedia.org/wiki/Comma-separated_values] file representing the molecular properties to fit.

featurizer: The type of transformation to apply to the smiles [https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system] to generates the features [https://en.wikipedia.org/wiki/Feature_(machine_learning)]. Could be either fingerprint or graph.

Have a look at the Available models.

Training a model

In order to run the training, run the following command:

modeller --mode train -i input.yml

swan will generate a log file called output.log with a timestamp for the different steps during the training.
Finally, you can see in your cwd a folder called swan_models containing the parameters of your statistical model.

It is possible to restart the training procedure by providing the --restart option like:

modeller --mode train -i input.yml --restart

Predicting new data

To predict new data you need to provide some smiles for which you want to compute the properties of interest, in this
case the activity coefficient_. For doing so, you need to provide in the dataset_file entry of the input.yml
file the path to a csv [https://en.wikipedia.org/wiki/Comma-separated_values] file containing the smiles, like the smiles.csv_:

,smiles
0,OC(=O)C1CNC2C3C4CC2C1N34
1,OC(=O)C1CNC2COC1(C2)C#C
2,OC(=O)CN1CC(=C)C(C=C)C1=N

Then run the command:

modeler --mode predict -i input.yml

swan will look for a swan_model.pt file with the previously trained model and will load it.

Finally, you will find a file called “predicted.csv” with the predicted values for the activity coefficients.

Available models

Currently Swan Implements the following models:

Fully Connected Neural Network

A standard fully connected neural network that takes fingerprints as
input features. To use the model you need to specify in the model section
of the input YAML file the following:

model:
 name: FingerprintFullyConnected
 parameters:
 input_features: 2048
 hidden_cells: 100
 output_features: 1

The model takes 3 additional optional parameters:
* input_features: fingerprint size. Default 2048.
* hidden_cells: Hiden number of cell(or nodes). Default 100.
* num_labels: the amount of labels to predict. Default 1.

Also, the model requires as a featurizer a fingerprint calculator that can be provided like:

featurizer:
 fingerprint: atompair

Available fingerprints algorithms are: atompair (default), morgan or torsion. These
algorithms are provided by RDKIT descriptor package [https://rdkit.org/docs/source/rdkit.Chem.rdMolDescriptors.html].

Message Passing Neural Network

Implementation of the message passing neural network (MPNN) reported at https://arxiv.org/abs/1704.01212.
If you don’t have an idea what a MPNN is have a look at
this introduction to Graph Neural Networks [https://www.youtube.com/watch?v=zCEYiCxrL_0&list=PLVqPBNulzDDg8ieQZ2G643UFbHm-qWW7Z&index=1&t=2239s].

To train your model using the MPNN you need to provide the following section in the YAML input file:

model:
 name: MPNN
 parameters:
 output_channels: 10
 num_labels: 1
 batch_size: 128
 num_iterations: 3

The optional parameters for the model are: ::
* output_channels Channels in the Convolution. default 10.
* num_labels: the amount of labels to predict. Default 1.
* batch_size: the size of the batch used to train the model. Default 128.
* num_iterations: number of steps to interchange messages for each epoch. Default 3.

Additionally the model requires the use of the following featurizer:

featurizer:
 graph: molecular
 file_geometries: geometries.json

Where file_geometries is a JSON file containing an array of molecules on PDB format. Check
the example file [https://github.com/nlesc-nano/swan/blob/main/tests/files/cdft_geometries.json]
If the file_geometries is not set in the input the model will try to use the RDKit geometries.

Training and validation

The training and validation functionality is implemented by the Modeller class.

API Data Representation

Data Base Class

Graph Data Base Class

Fingerprints Data

Torch Geometric Data

DGL Data

API Statistical Models

Available models

Deep Feedforward Network

Message Passing Graph Neural Network

Equivariant Neural Networks

Index

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to SWAN!

 		
 Screening Workflows And Nanomaterials

 		
 🛠 Installation

 		
 Dependencies installation

 		
 Package installation

 		
 Tutorial to Generate Statistical Models

 		
 Simulation input

 		
 Training a model

 		
 Predicting new data

 		
 Available models

 		
 Fully Connected Neural Network

 		
 Message Passing Neural Network

 		
 Training and validation

 		
 API Data Representation

 		
 Data Base Class

 		
 Graph Data Base Class

 		
 Fingerprints Data

 		
 Torch Geometric Data

 		
 DGL Data

 		
 API Statistical Models

 		
 Deep Feedforward Network

 		
 Message Passing Graph Neural Network

 		
 Equivariant Neural Networks

_static/minus.png

_static/plus.png

_static/up-pressed.png

_static/up.png

