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Screening Workflows And Nanomaterials

🦢 Swan is a Python pacakge to create statistical models using machine learning to predict molecular properties. See Documentation [https://swan.readthedocs.io/en/latest/].


🛠 Installation


	Download miniconda for python3: miniconda [https://docs.conda.io/en/latest/miniconda.html] (also you can install the complete anaconda [https://www.anaconda.com/distribution/#download-section] version).


	Install according to: installConda [https://conda.io/projects/conda/en/latest/user-guide/install/index.html].


	Create a new virtual environment using the following commands:


	conda create -n swan






	Activate the new virtual environment


	conda activate swan








To exit the virtual environment type  conda deactivate.


Dependencies installation


	Type in your terminal:

conda activate swan





Using the conda environment the following packages should be installed:


	install RDKit [https://www.rdkit.org] and H5PY [https://www.h5py.org/]:


	conda install -y -q -c conda-forge h5py rdkit






	install Pytorch [https://pytorch.org] according to this [https://pytorch.org/get-started/locally/] recipe


	install Pytorch_Geometric dependencies [https://github.com/rusty1s/pytorch_geometric#installation].


	install DGL using conda [https://www.dgl.ai/pages/start.html]






Package installation

Finally install the package:


	Install swan using pip:
- pip install git+https://github.com/nlesc-nano/swan.git




Now you are ready to use swan.


Notes:


	Once the libraries and the virtual environment are installed, you only need to type
conda activate swan each time that you want to use the software.












          

      

      

    

  

    
      
          
            
  
Tutorial to Generate Statistical Models

In this tutorial we explore how to create and train statistical models to predict
molecular properties using the Pytorch [https://pytorch.org] library. We will use smiles [https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system] to represent the molecules
and use the csv [https://en.wikipedia.org/wiki/Comma-separated_values] file format to manipulate the molecules and their properties.

As an example, we will predict the activity coefficient_ for a subset of carboxylic acids taken
from the GDB-13 database_. Firstly, We randomly takes a 1000 smiles [https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system] from the database and
compute the activity coefficient_ using the COSMO approach_. We store the values in the thousand.csv_
file.

A peek into the file will show you something like:

smiles,E_solv,gammas
OC(=O)C1OC(C#C)C2NC1C=C2,-11.05439751550119,8.816417146193844
OC(=O)C1C2NC3C(=O)C2CC13O,-8.98188869016993,52.806217658944995
OC(=O)C=C(C#C)C1NC1C1CN1,-11.386853547889574,6.413128231164093
OC(=O)C1=CCCCC2CC2C#C1,-10.578966144649726,1.426566948888662





Where the first column contains the index of the row, the second the solvation energy and finally the
activity coefficients_ denoted as gammas. Once we have the data we can start exploring different statistical methods.

swan offers a thin interface to Pytorch [https://pytorch.org]. It takes yaml [https://yaml.org] file as input and either train an statistical model or
generates a prediction using a previously trained model. Let’s briefly explore the swan input.


Simulation input

A typical swan input file looks like:

dataset_file:
  tests/test_files/thousand.csv
properties:
  - gammas

use_cuda: True

featurizer:
  fingerprint: atompair

model:
  name: FingerprintFullyConnected
  parameters:
     input_features: 2048  # Fingerprint size
     hidden_cells: 200
     output_features: 1  # We are predicting a single property

torch_config:
  epochs: 100
  batch_size: 100
  optimizer:
    name: sgd
    lr: 0.002





dataset_file: A csv [https://en.wikipedia.org/wiki/Comma-separated_values] file with the smiles [https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system] and other molecular properties.

properties: the columns names of hte csv [https://en.wikipedia.org/wiki/Comma-separated_values] file representing the molecular properties to fit.

featurizer: The type of transformation to apply to the smiles [https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system] to generates the features [https://en.wikipedia.org/wiki/Feature_(machine_learning)]. Could be either fingerprint or graph.

Have a look at the  Available models.



Training a model

In order to run the training, run the following command:

modeller --mode train -i input.yml





swan will generate a log file called  output.log with a timestamp for the different steps during the training.
Finally, you can see in your cwd a folder called swan_models containing the parameters of your statistical model.

It is possible to restart the training procedure by providing the --restart option like:

modeller --mode train -i input.yml --restart







Predicting new data

To predict new data you need to provide some smiles for which you want to compute the properties of interest, in this
case the activity coefficient_. For doing so, you need to provide in the dataset_file entry of the input.yml
file the path to a csv [https://en.wikipedia.org/wiki/Comma-separated_values] file containing the smiles, like the smiles.csv_:

,smiles
0,OC(=O)C1CNC2C3C4CC2C1N34
1,OC(=O)C1CNC2COC1(C2)C#C
2,OC(=O)CN1CC(=C)C(C=C)C1=N





Then run the command:

modeler --mode predict -i input.yml





swan will look for a swan_model.pt file with the previously trained model and will load it.

Finally, you will find a file called “predicted.csv” with the predicted values for the activity coefficients.





          

      

      

    

  

    
      
          
            
  
Available models

Currently Swan Implements the following models:


Fully Connected Neural Network

A standard fully connected neural network that takes fingerprints as
input features. To use the model you need to specify in the model section
of the input YAML file the following:

model:
  name: FingerprintFullyConnected
  parameters:
    input_features: 2048
    hidden_cells: 100
    output_features: 1





The model takes 3 additional optional parameters:
* input_features: fingerprint size. Default 2048.
* hidden_cells: Hiden number of cell(or nodes). Default 100.
* num_labels: the amount of labels to predict. Default 1.

Also, the model requires as a featurizer a fingerprint calculator that can be provided like:

featurizer:
  fingerprint: atompair





Available fingerprints algorithms are: atompair (default), morgan or torsion. These
algorithms are provided by RDKIT descriptor package [https://rdkit.org/docs/source/rdkit.Chem.rdMolDescriptors.html].



Message Passing Neural Network

Implementation of the message passing neural network (MPNN) reported at https://arxiv.org/abs/1704.01212.
If you don’t have an idea what a MPNN is have a look at
this introduction to Graph Neural Networks [https://www.youtube.com/watch?v=zCEYiCxrL_0&list=PLVqPBNulzDDg8ieQZ2G643UFbHm-qWW7Z&index=1&t=2239s].

To train your model using the MPNN you need to provide the following section in the YAML input file:

model:
  name: MPNN
  parameters:
    output_channels: 10
    num_labels: 1
    batch_size: 128
    num_iterations: 3





The optional parameters for the model are: ::
* output_channels Channels in the Convolution. default 10.
* num_labels: the amount of labels to predict. Default 1.
*  batch_size: the size of the batch used to train the model. Default 128.
* num_iterations: number of steps to interchange messages for each epoch. Default 3.

Additionally the model requires the use of the following featurizer:

featurizer:
 graph: molecular
 file_geometries: geometries.json





Where file_geometries is a JSON file containing an array of molecules on PDB format. Check
the example file [https://github.com/nlesc-nano/swan/blob/main/tests/files/cdft_geometries.json]
If the file_geometries is not set in the input the model will try to use the RDKit geometries.





          

      

      

    

  

    
      
          
            
  
Training and validation

The training and validation functionality is implemented by the Modeller class.




          

      

      

    

  

    
      
          
            
  
API Data Representation
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